Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Euro Surveill ; 27(44)2022 11.
Article in English | MEDLINE | ID: covidwho-2109635

ABSTRACT

BackgroundSince the roll-out of COVID-19 vaccines in late 2020 and throughout 2021, European governments have relied on mathematical modelling to inform policy decisions about COVID-19 vaccination.AimWe present a scenario-based modelling analysis in the Netherlands during summer 2021, to inform whether to extend vaccination to adolescents (12-17-year-olds) and children (5-11-year-olds).MethodsWe developed a deterministic, age-structured susceptible-exposed-infectious-recovered (SEIR) model and compared modelled incidences of infections, hospital and intensive care admissions, and deaths per 100,000 people across vaccination scenarios, before the emergence of the Omicron variant.ResultsOur model projections showed that, on average, upon the release of all non-pharmaceutical control measures on 1 November 2021, a large COVID-19 wave may occur in winter 2021/22, followed by a smaller, second wave in spring 2022, regardless of the vaccination scenario. The model projected reductions in infections/severe disease outcomes when vaccination was extended to adolescents and further reductions when vaccination was extended to all people over 5 years-old. When examining projected disease outcomes by age group, individuals benefitting most from extending vaccination were adolescents and children themselves. We also observed reductions in disease outcomes in older age groups, particularly of parent age (30-49 years), when children and adolescents were vaccinated, suggesting some prevention of onward transmission from younger to older age groups.ConclusionsWhile our scenarios could not anticipate the emergence/consequences of SARS-CoV-2 Omicron variant, we illustrate how our approach can assist decision making. This could be useful when considering to provide booster doses or intervening against future infection waves.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adolescent , Humans , Aged , Adult , Middle Aged , Child, Preschool , Netherlands/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
2.
Elife ; 112022 09 13.
Article in English | MEDLINE | ID: covidwho-2030291

ABSTRACT

Background: Variants of concern (VOCs) of SARS-CoV-2 have caused resurging waves of infections worldwide. In the Netherlands, the Alpha, Beta, Gamma, and Delta VOCs circulated widely between September 2020 and August 2021. We sought to elucidate how various control measures, including targeted flight restrictions, had impacted the introduction and spread of these VOCs in the Netherlands. Methods: We performed phylogenetic analyses on 39,844 SARS-CoV-2 genomes collected under the Dutch national surveillance program. Results: We found that all four VOCs were introduced before targeted flight restrictions were imposed on countries where the VOCs first emerged. Importantly, foreign introductions, predominantly from other European countries, continued during these restrictions. After their respective introductions into the Netherlands, the Alpha and Delta VOCs largely circulated within more populous regions of the country with international connections before asymmetric bidirectional transmissions occurred with the rest of the country and the VOC became the dominant circulating lineage. Conclusions: Our findings show that flight restrictions had limited effectiveness in deterring VOC introductions due to the strength of regional land travel importation risks. As countries consider scaling down SARS-CoV-2 surveillance efforts in the post-crisis phase of the pandemic, our results highlight that robust surveillance in regions of early spread is important for providing timely information for variant detection and outbreak control. Funding: None.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Netherlands/epidemiology , Phylogeny , SARS-CoV-2/genetics
3.
Clin Infect Dis ; 73(12): 2318-2321, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1599037

ABSTRACT

This large, nationwide, population-based, seroepidemiological study provides evidence of the effectiveness of physical distancing (>1.5 m) and indoor group size reductions in reducing severe acute respiratory syndrome coronavirus 2 infection. Additionally, young adults may play an important role in viral spread, contrary to children up until age 12 years with whom close contact is permitted. CLINICAL TRIALS REGISTRATION: NTR8473.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Netherlands/epidemiology , Physical Distancing , Research , Young Adult
4.
PLoS Comput Biol ; 17(12): e1009697, 2021 12.
Article in English | MEDLINE | ID: covidwho-1571974

ABSTRACT

For the control of COVID-19, vaccination programmes provide a long-term solution. The amount of available vaccines is often limited, and thus it is crucial to determine the allocation strategy. While mathematical modelling approaches have been used to find an optimal distribution of vaccines, there is an excessively large number of possible allocation schemes to be simulated. Here, we propose an algorithm to find a near-optimal allocation scheme given an intervention objective such as minimization of new infections, hospitalizations, or deaths, where multiple vaccines are available. The proposed principle for allocating vaccines is to target subgroups with the largest reduction in the outcome of interest. We use an approximation method to reconstruct the age-specific transmission intensity (the next generation matrix), and express the expected impact of vaccinating each subgroup in terms of the observed incidence of infection and force of infection. The proposed approach is firstly evaluated with a simulated epidemic and then applied to the epidemiological data on COVID-19 in the Netherlands. Our results reveal how the optimal allocation depends on the objective of infection control. In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation strategy optimized for an outcome outperforms other strategies such as the allocation from young to old, from old to young, and at random. Our simulations clarify that the current policy in the Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that minimizes deaths. The proposed method provides an optimal allocation scheme, given routine surveillance data that reflect ongoing transmissions. This approach to allocation is useful for providing plausible simulation scenarios for complex models, which give a more robust basis to determine intervention strategies.


Subject(s)
Algorithms , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/methods , Age Factors , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/supply & distribution , Computational Biology , Computer Simulation , Health Care Rationing/methods , Health Care Rationing/statistics & numerical data , Humans , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Netherlands/epidemiology , Pandemics/prevention & control , Pandemics/statistics & numerical data , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
5.
Euro Surveill ; 26(8)2021 02.
Article in English | MEDLINE | ID: covidwho-1150673

ABSTRACT

BackgroundDuring the COVID-19 pandemic, many countries have implemented physical distancing measures to reduce transmission of SARS-CoV-2.AimTo measure the actual reduction of contacts when physical distancing measures are implemented.MethodsA cross-sectional survey was carried out in the Netherlands in 2016-17, in which participants reported the number and age of their contacts the previous day. The survey was repeated among a subsample of the participants in April 2020, after strict physical distancing measures were implemented, and in an extended sample in June 2020, after some measures were relaxed.ResultsThe average number of community contacts per day was reduced from 14.9 (interquartile range (IQR): 4-20) in the 2016-17 survey to 3.5 (IQR: 0-4) after strict physical distancing measures were implemented, and rebounded to 8.8 (IQR: 1-10) after some measures were relaxed. All age groups restricted their community contacts to at most 5, on average, after strict physical distancing measures were implemented. In children, the number of community contacts reverted to baseline levels after measures were eased, while individuals aged 70 years and older had less than half their baseline levels.ConclusionStrict physical distancing measures greatly reduced overall contact numbers, which likely contributed to curbing the first wave of the COVID-19 epidemic in the Netherlands. However, age groups reacted differently when measures were relaxed, with children reverting to normal contact numbers and elderly individuals maintaining restricted contact numbers. These findings offer guidance for age-targeted measures in future waves of the pandemic.


Subject(s)
COVID-19/prevention & control , Pandemics , Physical Distancing , Social Interaction , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Netherlands/epidemiology , Young Adult
6.
Eurosurveillance ; 26(8):1, 2021.
Article in English | ProQuest Central | ID: covidwho-1124144

ABSTRACT

Background: During the COVID-19 pandemic, many countries have implemented physical distancing measures to reduce transmission of SARS-CoV-2. Aim: To measure the actual reduction of contacts when physical distancing measures are implemented. Methods: A cross-sectional survey was carried out in the Netherlands in 2016–17, in which participants reported the number and age of their contacts the previous day. The survey was repeated among a subsample of the participants in April 2020, after strict physical distancing measures were implemented, and in an extended sample in June 2020, after some measures were relaxed. Results: The average number of community contacts per day was reduced from 14.9 (interquartile range (IQR): 4–20) in the 2016–17 survey to 3.5 (IQR: 0–4) after strict physical distancing measures were implemented, and rebounded to 8.8 (IQR: 1–10) after some measures were relaxed. All age groups restricted their community contacts to at most 5, on average, after strict physical distancing measures were implemented. In children, the number of community contacts reverted to baseline levels after measures were eased, while individuals aged 70 years and older had less than half their baseline levels. Conclusion: Strict physical distancing measures greatly reduced overall contact numbers, which likely contributed to curbing the first wave of the COVID-19 epidemic in the Netherlands. However, age groups reacted differently when measures were relaxed, with children reverting to normal contact numbers and elderly individuals maintaining restricted contact numbers. These findings offer guidance for age-targeted measures in future waves of the pandemic.

7.
Emerg Infect Dis ; 27(2): 411-420, 2021 02.
Article in English | MEDLINE | ID: covidwho-1076425

ABSTRACT

Since the 2009 influenza pandemic, the Netherlands has used a weekly death monitoring system to estimate deaths in excess of expectations. We present estimates of excess deaths during the ongoing coronavirus disease (COVID-19) epidemic and 10 previous influenza epidemics. Excess deaths per influenza epidemic averaged 4,000. The estimated 9,554 excess deaths (41% in excess) during the COVID-19 epidemic weeks 12-19 of 2020 appeared comparable to the 9,373 excess deaths (18%) during the severe influenza epidemic of 2017-18. However, these deaths occurred in a shorter time, had a higher peak, and were mitigated by nonpharmaceutical control measures. Excess deaths were 1.8-fold higher than reported laboratory-confirmed COVID-19 deaths (5,449). Based on excess deaths and preliminary results from seroepidemiologic studies, we estimated the infection-fatality rate to be 1%. Monitoring of excess deaths is crucial for timely estimates of disease burden for influenza and COVID-19. Our data complement laboratory-confirmed COVID-19 death reports and enable comparisons between epidemics.


Subject(s)
COVID-19/mortality , Epidemics/statistics & numerical data , Influenza, Human/mortality , Humans , Mortality/trends , Netherlands/epidemiology , Orthomyxoviridae , SARS-CoV-2 , Seasons
9.
Euro Surveill ; 25(5)2020 02.
Article in English | MEDLINE | ID: covidwho-668

ABSTRACT

A novel coronavirus (2019-nCoV) is causing an outbreak of viral pneumonia that started in Wuhan, China. Using the travel history and symptom onset of 88 confirmed cases that were detected outside Wuhan in the early outbreak phase, we estimate the mean incubation period to be 6.4 days (95% credible interval: 5.6-7.7), ranging from 2.1 to 11.1 days (2.5th to 97.5th percentile). These values should help inform 2019-nCoV case definitions and appropriate quarantine durations.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections , Infectious Disease Incubation Period , Pneumonia, Viral , Travel , COVID-19 , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/transmission , Virus Latency
SELECTION OF CITATIONS
SEARCH DETAIL